A few notes on Matrix Algebra

Raghuveer Parthasarathy

Department of Physics, University of Oregon for Physics 351: Foundations of Physics II
(Dated: November 5, 2007)

We'll very briefly explain a few aspects of linear algebra. This discussion is sufficient for the problems encountered in your homework assignments. To learn more, see any linear algebra textbook, e.g.

Howard Anton, Elementary Linear Algebra (7th Ed.), John Wiley and Sons, New York, 1994.

I. MATRICES

A matrix is a rectangular array of numbers. The ma$\operatorname{trix} A$, below, is a 3×3 matrix, with elements $a_{i j}$, where the indices i and j run from 1 to 3 :

$$
A=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \tag{1}\\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

The matrix B, below, is a 3×1 matrix:

$$
B=\left[\begin{array}{l}
b_{11} \tag{2}\\
b_{21} \\
b_{31}
\end{array}\right]
$$

The product $A B$ is C, also a 3×1 matrix. The elements $c_{i 1}$ of C are given by

$$
c_{i 1}=\sum_{j=1}^{3} a_{i j} b_{j 1}
$$

where Σ indicates a sum. In other words, each element of C is the sum of the products of a row of A with a column of B. (Here, B only has one column.)

$$
C=A B=\left[\begin{array}{l}
a_{11} b_{11}+a_{12} b_{21}+a_{13} b_{31} \tag{3}\\
a_{21} b_{11}+a_{22} b_{21}+a_{23} b_{31} \\
a_{31} b_{11}+a_{32} b_{21}+a_{33} b_{31}
\end{array}\right]
$$

This is shorthand for three linear equations:

$$
\begin{align*}
a_{11} b_{11}+a_{12} b_{21}+a_{13} b_{31} & =c_{11} \tag{4}\\
a_{21} b_{11}+a_{22} b_{21}+a_{23} b_{31} & =c_{21} \tag{5}\\
a_{31} b_{11}+a_{32} b_{21}+a_{33} b_{31} & =c_{31} \tag{6}
\end{align*}
$$

When dealing with N coupled oscillators, we'll have matrix equations that look like $A B=0$, where 0 is a $N \times 1$ array of zeros. The elements of A will involve the oscillation frequencies (ω), and the elements of B will
involve the amplitudes. We'll want to find the conditions such that the equation has a solution other than the "trivial" one, $B=0$. A fundamental theorem of linear algebra states that a non-trivial solution exists if and only if the determinant of A is zero. In the next section, we'll look at how to calculate a determinant.

Exercises. (Don't turn these in.)

1. Let

$$
\begin{gather*}
A=\left[\begin{array}{ccc}
1 & 3 & 6 \\
3 & -2 & 2 \\
2 & 1 & 5
\end{array}\right] . \tag{7}\\
B=\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right] . \tag{8}
\end{gather*}
$$

Calculate $C=A B$.
Answer:

$$
C=\left[\begin{array}{c}
-1 \tag{9}\\
8 \\
3
\end{array}\right]
$$

2. Write the following system of equations as a matrix equation:

$$
\begin{array}{r}
w_{1} C_{1}+w_{2} C_{2}+w_{1} C_{3}=0 \\
2 w_{1} C_{1}+2 w_{1} C_{3}=0 \\
w_{2} C_{1}+w_{2} C_{2}+2 w_{1} C_{3}=0 \tag{12}
\end{array}
$$

Answer:

$$
\left[\begin{array}{ccc}
w_{1} & w_{2} & w_{1} \tag{13}\\
2 w_{1} & 0 & 2 w_{1} \\
w_{2} & w_{2} & 2 w_{1}
\end{array}\right]\left[\begin{array}{l}
C_{1} \\
C_{2} \\
C_{3}
\end{array}\right] \cdot=0
$$

II. DETERMINANTS

The determinant of the 2×2 matrix

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \tag{14}\\
a_{21} & a_{22}
\end{array}\right]
$$

is

$$
\begin{equation*}
\operatorname{det}(A)=a_{11} a_{22}-a_{12} a_{21} \tag{15}
\end{equation*}
$$

Note that this is one diagonal minus the other.
The determinant of the 3×3 matrix

$$
A=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \tag{16}\\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

is

$$
\begin{align*}
\operatorname{det}(A)= & a_{11}\left(a_{22} a_{33}-a_{23} a_{32}\right) \tag{17}\\
& -a_{12}\left(a_{21} a_{33}-a_{23} a_{31}\right) \tag{18}\\
& +a_{13}\left(a_{21} a_{32}-a_{22} a_{31}\right) . \tag{19}
\end{align*}
$$

This looks complicated, but note that we took each element of the first row of A (we could have used any row) and multiplied it by the determinant of the 2×2 matrix that is formed by excluding the row and column of the element we're considering. We then add all these terms, flipping the sign (± 1) for each alternate element. In other words:

$$
\begin{align*}
\operatorname{det}(A)= & +a_{11} \operatorname{det}\left[\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right] \tag{20}\\
& -a_{12} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right] \tag{21}
\end{align*}
$$

$$
+a_{13} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{22} \tag{22}\\
a_{31} & a_{32}
\end{array}\right]
$$

Exercises. (Don't turn these in.)

1. Consider a "rotation matrix:"

$$
R=\left[\begin{array}{cc}
\cos (\theta) & \sin (\theta) \tag{23}\\
-\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

Show that $\operatorname{det}(R)=1$.
2. Evaluate the determinant of the array

$$
W=\left[\begin{array}{ccc}
w_{1} & w_{2} & w_{1} \tag{24}\\
2 w_{1} & 0 & 2 w_{1} \\
w_{2} & w_{2} & 2 w_{1}
\end{array}\right]
$$

Answer:

$$
\begin{align*}
\operatorname{det}(W)= & w_{1}\left(-2 w_{1} w_{2}\right)-w_{2}\left(4 w_{1}^{2}-2 w_{1} w_{2}\right) \tag{25}\\
& +w_{1}\left(2 w_{1} w_{2}\right) \tag{26}\\
= & -4 w_{1}^{2} w_{2}+2 w_{1} w_{2}^{2} \tag{27}
\end{align*}
$$

